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Abstract

A possibility to compose program of multiple di�erent programming languages is becoming of
great importance nowadays. For example, programmers can reuse existing software libraries
even if they are written in a di�erent language, which brings code use one level further.
Recently, a lot of e�ort has been spent on supporting multiple languages on both major
runtime environments � Java and CLR.

In this thesis, we will describe an implementation of Libjava, a Java language implemen-
tation running on top of Smalltalk/X virtual machine. Contrary to Java or CLR, Libjava
is not translating Java programs into Smalltalk bytecode. Instead, the virtual machine was
modi�ed so it can run both Smalltalk and Java bytecode. We have validated our imple-
mentation on several large Java applications - JUnit testing framework, Groovy compiler,
Eclipse Java Compiler and Apache Tomcat Servlet Container.

Abstract

Une possibilité de composer le programme des langage di�érents multiples de program-
mation est de plus en plus grande importance de nos jours. Par exemple, les programmeurs
peuvent réutiliser les bibliothèques logicielles existants même si elles sont écrites dans un
langage di�érent, ce qui apporte l'utilisation du code de niveau plus haut. Récemment,
beaucoup d'e�ort a été dépensé sur le soutien des langages multiples sur les deux grandes
runtime environnements Java Virtual Machine et CLR.

Dans cette thèse, nous allons décrire une mise en ÷uvre de Libjava, une implementation
du langage Java qui s'exécute au dessus de Smalltalk/X machine virtuelle. Au contraire
de langages fonctionnant sur JVM ou CLR, Libjava ne traduit pas des programmes de
Java au bytecode de Smalltalk. Au lieu de cela, la machine virtuelle a été modi�é de
sorte qu'il peut fonctionner aussi bien Smalltalk que Java. Nous avons validé notre mise en
÷uvre sur plusieurs applications Java grands - JUnit test framework, Groovy compilateur,
le compilateur Java Eclipse et le serveur de servlet Apache Tomcat.
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Chapter 1

Introduction

A number of programming languages has been developed in the past and new ones are being
developed. Although all general-purpose programming languages are in theory equivalent, in
practice some languages better �t particular problem than another. Moreover, there is a lot
of software libraries already written and possibility to reuse existing library greatly increases
programmer's productivity.

Recently, lot of e�ort has been done to support multiple languages. There is more than
300 languages implemented on top of JVM[8].

Libjava is an implementation of Java language for Smalltalk/X environment. Libjava
allows Java programs to run within Smalltalk/X environment. Smalltalk code can run Java
code, which can in turn call back Smalltalk code. There were two main reasons for imple-
menting Java in Smalltalk/X:

� reusing existing Java code in software written in Smalltalk/X

� being able to run Java code together with Smalltalk and other languages already sup-
ported by Smalltalk/X provides great vehicle for further research on language interop-
erability.

A common approach chosen by both JVM and CLR is to compile hosted languages
into one intermediate language (Java bytecode in case of JVM or CIL in case of CLR).
The virtual machine understands and interprets this common intermediate representation.
However, such approach has few drawbacks. The main one is fact that the all features not
directly supported by the common intermediate language must be emulated on top of it,
which may be bit cumbersome and slow.

On contrary to this traditional implementation, Libjava took di�erent approach. Instead
of translating Java code into Smalltalk/X bytecode, the virtual machine has been modi�ed
so it can execute both Java and Smalltalk bytecodes. In other words, the virtual machine
contains interpreter and compiler for both, Java and Smalltalk bytecode instructions.

1
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2 CHAPTER 1. INTRODUCTION

1.1 Initial state

We must say, that a lot of work has been done in past. Development of Libjava has been
started by Claus Gittinger in 1996 and almost stopped in 1999, leaving Libjava being able
to run Java applets using 1.1 runtime library. The basic architecture has been laid out by
the original author.

At the time, when we started working on Libjava, current version of Java was 1.6. Libjava
was not able to start and run java programs using 1.6 runtime library. Many native method
implementations were missing,some instruction semantic changed since then. Therefore,
we had to implement missing features and �x some parts of the codebase that did not �t
expected behavior. Following list summarizes changes and improvements we did:

1. Changed native method binding mechanism

2. Many native methods implemented

3. Fixes in class loader

4. Fixes in Java bytecode processor and decompiler

5. Integration of JUnit and Mauve testing frameworks

6. Redesigned Constant Pool content

7. Reimplemented class resolving logic

8. Implemented notion of Class Loader

9. Class Space (JavaClassRegistry)

10. Reimplemented synchronization (JavaMonitor)

11. Java support for stack unwind

12. Constant Pool invalidation (un�nished)

13. Java JIT compiler (un�nished)

In following chapters, we will talk about how we designed and implemented new features,
reasons, why we had to reimplement existing features and how we validated our result. In
chapter 2 we will familiarize the reader with general architecture, in chapter 3 we will describe
our class loading mechanism, in chapter 4 we will talk about new constant pool content and
new resolving scheme. In chapter 5, we describe how we achieved synchronization and locking
across both Java and Smalltalk. Chapter 6 deals with Just-in-Time compiler, our proposal
on its behavior and review of current, not working implementation. Our testing approach
is summarized in chapter 7 and we validate the results in chapter 8. We summarize gained
experience in chapter 9.

http://www.junit.org/
http://sourceware.org/mauve/


1.2. CONVENTIONS 3

Example Description

java.lang.Object Class names, inlined code

JavaClassRegistry»classForName: instance method classForName: of Java-
ClassRegistry class

JavaVM class»throwException: class method throwException: of JavaVM
class

Object#toString() instance method toString() of Object class
(notation for Java classes and methods)

Double.parseDouble(String) static method parseDouble with one ar-
gument of type java.lang.String de�ned in
class java.lang.Double

Table 1.1: Typing conventions

1.2 Conventions

Throughout the thesis, we will use conventions shown in Table 1.1.
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Chapter 2

Architecture

Libjava itself consists of two parts: VM support consisting mainly of Bytecode inter-
preter, internally called Jinterpret, and ST Runtime, written in Smalltalk. In this
chapter we will describe most important parts of Libjava and we will give the reader general
understanding of how things work together and where a particular feature is implemented.

2.1 General Structure

Figure 2.1: General structure of Libjava

Figure 2.1, as mentioned, shows two parts. On the left side, virtual machine, on the
right side, Smalltalk environment. Bytecode Interpreter is written in C language as a
part of ST/X virtual machine and the rest of Libjava is written in Smalltalk. Smalltalk

5



6 CHAPTER 2. ARCHITECTURE

part can be divided into Model, containing classes describing entities of Java language,
such as JavaClass and JavaMethod. Mentioning these classes, it is important to note,
that both Java class and Smalltalk class are �rst class citizens, they are both subclasses of
common parent and they behave identically. Similarly, Smalltalk and Java methods are both
executable code, there is not an emulation involved. Runtime Support consists of classes
implementing logic livening up the model.

2.2 VM Support

Libjavais not Java bytecode to Smalltalk bytecode compiler, it directly interprets Java byte-
code. Because of that, virtual machine support is needed, for performance reasons.

2.2.1 Bytecode Interpreter

Initial version of Libjava used Java interpreter written in C language. This interpreter is
part of Smalltalk/X virtual machine. Interpreting Java in compiled C code is more e�ective
than doing so in Smalltalk.

In order to support Bytecode Interpreter, ST/X virtual machine has been changed, so
it is aware of Java methods.1 When a method is executed, VM checks if the method is
de�ned in Smalltalk or Java, and handles the method appropriately. In case of Java method,
interpretation is passed to Bytecode Interpreter. Bytecode Interpreter then creates instance
of JavaContext, object representation of stack frames in Smalltalk, available to the
running Smalltalk code and programmer. Bytecode Interpreter initializes context and starts
executing method's bytecode.

2.2.2 Java Frame Representation

Instances of class JavaContext represent activation records for all Java methods being
executed within Smalltalk/X VM. Java contexts are created by the Bytecode Interpreter
for each invoked method. JavaContext extends Context (stack frame representation for
Smalltalk methods) and adds some instance �elds and methods to support Java language,
namely:

� Monitor support

� More than 16 method parameters support

� Exception handling

� Correct cleanup after unexpected termination (for example after thrown exception)

� Execution of finally blocks

1More about Java methods can be seen in section 3.2
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2.2.3 Native method invocation

Java native methods are methods written in native code in the JVM itself or in a library
linked to the JVM. Via native methods, Java code can access JVM internal state, hook
and modify JVM behavior, access facilities outside the Java environment (such as operating
system services) or pro�t from faster implementation. All native methods are marked as
so using ACC_NATIVE bit. When a Java native method is to be executed, Bytecode
Interpreter recognizes it and sends nativeMethodInvokation to the method, as shown
on 2.1.

1 if (accessFlags & __MASKSMALLINT(__ACC_NATIVE)) {
2 result = _SEND0(__aJavaMethod,
3 MKSYMBOL("nativeMethodInvokation"), nil, &nmi);
4 }

Code Example 2.1: Checking for and invocation of Java native method

On the line 2, if condition is true if method has particular �ag set. Return value of
JavaMethod»nativeMethodInvokation is stored in result variable (line 3), which is
later on returned as a return value of the native method. nativeMethodInvokation
method is responsible for looking up an implementation and execution of given native
method. Its principal code is shown at Figure 2.2.

1 nativeMethodInvokation
2 | sel mthd sender |
3 sel ← self searchNativeImplementation.
4 mthd ← (JavaVM class compiledMethodAt: sel).
5 sender ← thisContext sender.
6 ↑ JavaVM perform: sel with: sender.

Code Example 2.2: nativeMethodInvokation ST method

First, using method's selector, we search for corresponding method on JavaVM class
(line 3). Details of this method are shown at Figure 2.3. On line 4, method object is
retrieved from JavaVM. On line 5, Java context, from which the method was invoked, is
stored in sender variable. Finally, on the line 5, method is performed, with current Java
context as parameter.

1 searchNativeImplementation
2 | name selector |
3 name ← selector upTo: $(.
4 selector ← (
5 ’_’ ,
6 ((javaClass name copyReplaceAll: $/ with: $_)

replaceAll: $$ with: $_) ,
7 ’_’ , name , ’:’
8 ) asSymbol.
9 (JavaVM class canUnderstand: selector) ifTrue: [
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10 ↑ selector
11 ].
12 self compileNativeImplementationStub: selector.
13 ↑selector.

Code Example 2.3: searchNativeImplementation ST method

On Listing 2.3, implementation of JavaMethod»searchNativeImplementation
method is shown. On line 2, methods name (without parentheses), is stored in name vari-
able. In selector variable, fully quali�ed Java method's name is transformed into valid
ST selector (line 4). For example, Smalltalk selector for java.lang.Object#wait() is
_java_lang_Object_wait. If computed selector is already present in JavaVM, it's re-
turned. If not, a stub (method which just throws an exception) is compiled into JavaVM,
and selector is returned (line 9 and 10).

There is roughly 900 shared native methods in OpenJDK, plus around 700 unix speci�c.
Altogether (shared, Linux, Solaris and Windows native methods), there is 2034 native meth-
ods, which should be implemented to have fully compliant implementation given that all
features are implemented correctly. At the time of writing this thesis, there were 705 already
implemented in Libjava. Writing native method implementations is time consuming, but
rather straightforward task. Due to the time and resources constraints, we limit ourselves
to implement only those needed by application or library we would like to run.

2.2.4 Implementing native methods

If someone wanted to use native method in his Java program interpreted by Libjava, he can
just execute the program. When a native method is invoked, the debugger window will be
opened, and the behavior of the method can be implemented there. To each native method
implementation in the JavaVM class, an instance of JavaContext is passed as argument,
holding all arguments passed to the native function. Example of implemented native method
is shown on Listing 2.4.

1 _java_lang_Thread_interrupt0: nativeContext
2 | jThread stProcess |
3

4 jThread ← nativeContext receiver.
5 stProcess ← self stProcessForJavaThread: jThread.
6 stProcess javaInterrupt.

Code Example 2.4: Example of Java native method implementation

On the Listing 2.4, we can see implementation of the java.lang.Thread#interrupt0()
native method. On the line 1, transformed selector can be seen. Receiver of the method
(object, on which method was called) is assigned into jThread variable (line 4). Next,
corresponding instance of Process (Smalltalk class that represents a thread) is looked
up and stored in stProcess variable. Finally, javaInterrupt message is sent to the
stProcess resulting in process interruption

http://openjdk.java.net/
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2.2.5 Instructions with complex semantics

Vast majority of bytecode instructions are quite simple, such as xCONST, xLOAD, xSTORE,
which just manipulate primitive data types, but there are few instructions, whose semantics
is rather complex - MONENTER, MONEXIT, ATHROW or CHECKCAST for instance. When a
more complex instruction is interpreted, Bytecode Interpreter can fall back to the Smalltalk
code (in other words, call Smalltalk method, in most cases, on the JavaVM class). Calling
Smalltalk method from Bytecode Interpreter during interpretation brings certain overhead,
but greatly eases implementation, debugging and testing and coding complex logic is time-
consuming and error-prone.

For most of such complex instructions, Smalltalk methods serve only as a trampoline for
unhandled cases so the Smalltalk method is actually executed rarely. Figure 2.5 shows an
excerpt of Jinterpret implementation of an ARRAYLENGTH instruction.

1 case J_ARRAYLENGTH:
2 {
3 OBJ v;
4

5 v = sp[-1]; /* array */
6 if (__isArray(v)) {
7 sp[-1] = __MKSMALLINT(__arraySize(v));
8 break;
9 }

10 if (__isStringLike(v)) {
11 sp[-1] = __MKSMALLINT(__stringSize(v));
12 break;
13 }
14 if (__isByteArray(v)) {
15 sp[-1] = __MKSMALLINT(__byteArraySize(v));
16 break;
17 }
18 if (__isSignedIntegerArray(v)) {
19 sp[-1] = __MKSMALLINT(__integerArraySize(v));
20 break;
21 }
22 ...
23 sp[-1] = _SEND1(JavaVM, MKSYMBOL("_ARRAYLENGTH:"), nil,

&dummy1, v);
24 ...
25 }
26 break;

Code Example 2.5: ARRAYLENGTH instruction

If branches on lines 6, 10, 14, 18 are handling cases for a particular argument passed to
ARRAYLENGTH. If one of these cases occur, return value is pushed onto the stack, Smalltalk
method is not invoked. But if argument passed to ARRAYLENGTH does not fall into any of
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these cases, handling is delegated to JavaVM class»_ARRAYLENGTH: method (line 23).
_SEND1 macro is used, which represents a method send with one argument.

2.2.6 Supporting more than 16 method arguments

Current Smalltalk/X VM supports up to 16 method arguments, i.e., it cannot handle
method with more than 16 arguments. However, JLS de�nes, that Java can have up to 255
arguments.[4, section 4.3.3] To support methods with too many arguments, Java method
with too many arguments is marked by a �ag. When a Java method is executed, the �ag
is checked. If it is set, Bytecode Interpreter expects arguments to be passed in as array.
Bytecode Interpreter then unpacks the array and stores arguments into the Java context.

2.3 Java Class Model

Smalltalk and Java are both falling into category Class-based, Object-Oriented languages.
However, both embrace Object Orientation from slightly di�erent angle.

2.3.1 Smalltalk Object Model

Smalltalk/X, as every smalltalk system following heritage of Smalltalk-80 de�ned by Smalltalk-
80: Language and its implementation book[3], has uniform object model (Figure 2.2).

1. Everything is an object

2. Every object is instance of a class, which is also and object

3. Each class is inheriting its behavior from a single superclass

4. Objects only communicate only via message passing

One object can access state of another object only via messages, accessing other object's
data is not possible. Because every object is instance of a class, even the class itself, method
lookup algorithm is straightforward - when an object receives a message, corresponding
method is looked up in object's class. If method is not found, searching continues in class'
superclass. Lookup ends, when nil is searched, nil is superclass of Object.

2.3.2 Java Object Model

Java Object model is shown on Figure 2.3. It's necessary to say that not everything in Java
is an object, Java has primitive types such as int and char, a special constant null, and
one built-in type - String, which is an object type, but language syntax allows for literal
representation of strings. Special place has null, which is, on contrary to Smalltalk, not an
object. Java classes are not �rst class objects, they live in JVM in a separate memory area.
Class can be accessed via getClass() method, which returns amirror to the internal class
representation.[1] A root of a class hierarchy in Java is java.lang.Object. Every object
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Figure 2.2: Smalltalk Object Model

in Java is instance of a class. Every class has superclass, except of java.lang.Object
class whose superclass is null.

Java introduces notion of static �elds and methods. Static �eld or method is shared
among all instances of given class. Smalltalk alternatives are class �elds and methods, but
they have a di�erent semantics.2 As an example of consequences of this design, method
lookup algorithm for static and normal methods di�er.

To avoid ambiguity, there cannot be two methods or �elds with the same name in one
class. Subclass can override method or �eld, and it does not matter whether the overridden
is static or not.

If the receiver is Java class, static method or �eld is looked up. If the current class does
not have method (or �eld) with given name, search continues in a superclass. Lookup ends
after reaching java.lang.Object.

If the receiver is instance, method or �eld is looked up in instance and static methods (or
�elds). If not found, the same happens in superclass until reaching java.lang.Object.

2.3.3 Object Model Mapping

Since Libjava is shares VM mechanism to execute Java code with Smalltalk, it must map
Java code to Smalltalk classes. Java classes have to be mapped to Smalltalk classes, Java
methods have to be mapped to Smalltalk methods, etc.

Mapping of Java object model to Smalltalk is shown on Figure 2.4. JavaObject is
root of Java hierarchy, with java.lang.Object being subclass of it. We introduced
JavaClass as superclass of all Java classes. Each Java object is instance of JavaObject

2Class methods in Smalltalk are inherited by subclasses (if not overridden)
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Figure 2.3: Java Object Model

and has one instance of JavaClass associated with it as its javaClass. Each Java Class
is instance of JavaClass and has one instance of JavaClass associated with it as its
superclass.

2.4 Runtime Support

In this section we will describe the most important classes forming the Libjava runtime
support. Runtime support classes in many ways simulate a work, which is normally done by
JVM, some of them provide services to the programmer (such as Java class), some of them
are important in connecting Java model classes together (such as JavaClassReader), etc.

2.4.1 Java

Java class is facade to the Java world inside Smalltalk. Java class provides following
services:

� Class loading and class access

� Java release access

� System properties

� Threads management

� Java initialization and teardown

� Java/Smalltalk object conversions

Two most important methods in Java class are Java class» initializeJava,
which starts whole Java system, and Java class»flushAllJavaResources, which
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Figure 2.4: Java to Smalltalk Object Model Mapping

will stop and clean up after running Java system. Another interesting methods are Java
class»classNamed: and Java class»classForName:. First method will return
already loaded Java class, or nil. Second method will in case of not loaded class search
classpath and load given class.

2.4.2 JavaVM

Runtime support and environment for Java. End user should not need to communicate
with JavaVM directly, Java class should be used instead. JavaVM is layer between the
native interpret and the rest of the system. JavaVM implements native methods invoked by
interpret. A list of services provided follows:

� Class registry access

� Re�ection

� Setting up default system properties

� Bytecode Interpreter complex instructions implementation

� Exceptions
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� Synchronization, monitors

� Native methods implementation

2.4.2.1 JavaClassRegistry

JVM supports dynamic class loading using ClassLoaders. Basic principles and design
reasons are pursued in [5]. JavaClassRegistry is class responsible keeping track of classes
loaded by individual class loaders. Class loading problems are rather subtle and we will o�er
our solutions to the reader in chapter 3.

2.4.2.2 JavaRe�ection

JavaReflection serves as a mirror allowing us to convert Java classes into their Smalltalk
alternatives and vice-versa. When in Smalltalk, regular instances of JavaClass are used.
But when a Java code for example calls getClass() or String.class, we need to convert
Smalltalk class into the instance of java.lang.Class. This is done in JavaReflection
class, also for arrays, objects, constant pools, methods, constructors, �elds and strings.

2.4.3 JavaResolver, JavaRef and subclasses

In Java class�le, all references outside the class�le itself such as references to used classes,
implemented interfaces and so on, are symbolic.[6, chapter 4] Such symbolic reference is
represented by the JavaRef class and its subclasses. Symbolic references are stored in the
Constant Pool.

Many instructions access constant pool content, for example INVOKEx instructions are
given an index to the constant pool on which a method reference is stored. This method
reference is then resolved and method is invoked.

JavaRef is root of the Java reference hierarchy, it de�nes interface and structure accessed
by Bytecode Interpreter. Together with primitive constants and JavaNameAndType are
the only objects fount in JavaConstantPool. JavaRef descendant tree is quite big and
consists of classes such as JavaStringRef, JavaClassRef or JavaMethodRef.

We will deal with class�le reading and loading in chapter 3.



Chapter 3

Class loading

Class loading is a process of loading new class from an external source, usually �le, dynam-
ically during runtime. In this chapter, we will start with brief introduction into Class�le
structure (3.1), followed by a closer look into JavaClass and its content (3.2). Constant
pool content is presented in 3.3. And at the end we present our �ndings and solutions
regarding the Class Loaders issues (3.4).

3.1 Class�le

Java classes are compiled by Java compiler into so called Class�le. Class�le format is
speci�ed by Java Language Reference.[6, chapter 4] Basic class�le structure is shown in
table 3.1.

We will not describe class�le format in more detail and will advise keen reader on the
Java Language Speci�cation [6]. For our purposes it is enough to know that class�le contains
everything Java class needs to know to be able to be loaded and linked with running sys-
tem. Constant pool is of great importance, describing references to the outside of the given
class, which needs to be resolved in order to access runtime class, method, �eld or String
representations of JVM.

3.2 JavaBehavior, JavaClass and their content

Java class in our environment is represented by JavaClass class (3.1). JavaBehavior,
its direct superclass, is responsible for handling constant pool, access �ags and interfaces. It
is subclass of Class class (representing Smalltalk class), inheriting for example notion of
superclass and many more. Bytecode Interpreter is aware of JavaBehavior structure and
directly accesses it.1

JavaClass implements the rest of features, which are not directly needed in Bytecode
Interpreter and is open for extension. To mention few of features JavaClass implements,
there is class loader awareness, annotations, static �elds or protection domain.

1Which means user can add �elds to the JavaClass, but not to the JavaBehavior, without changing
VM.

15
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Section Description

Magic Number Each class�le has to start with bytes 0xCAFEBABE

Version Major and Minor version numbers of the class�le. Java 6 has 50.0.

Constant Pool Pool of constants referenced in the class�le

Access Flags Denotes whether given class is public, abstract etc.

This Class Name of this class

Super Class Name of the superclass of this class

Interfaces Enumeration of interfaces implemented by this class

Fields Enumeration of all static and instance �elds in the class

Methods Enumeration of all static and instance methods in the class

Attributes Supplementary attributes of the class, for example source �le, an-
notations etc.

Table 3.1: Class�le structure

Instance and static �elds are represented by JavaField. Instances of JavaField know
their index into instVars array of Java object.

JavaMethod represents a Java method. Each class has its methods stored in the meth-
ods �eld. JavaMethod is subclass of CompiledCode, which is direct parent of Smalltalk
blocks and methods. This allows us to use Java methods like any other Smalltalk method,
and eases integration of Java methods into development tools. JavaMethod has three
subclasses, JavaMethodWithException, representing any Java method, which declares
throws clause, JavaMethodWithHandler, representing Java method, which has catch
block in its body, and JavaNativeMethod, which represents method written in native
code.

3.3 Constant pool content

Constant pool is a structure where all constants from class�le are stored - integers or UTF8
literals, but also class references, method references, or �eld references. Because runtime
system during compilation can di�er from the system used to load class �le and execute the
code, all references to the outside of the class must be symbolic and must be resolved in run
time.2 On the 3.2 we see classes, instances of which can be found in runtime constant pool of
Java class. Besides them, there are only primitive values, such as integers or UTF8 literals.

We shortly describe each of these classes in the Table 3.2.

3.4 Class loaders

In JVM,ClassLoader is a way of dynamic, type-safe class loading allowing Java programmer
to load classes in runtime, and allowing him to alter class loading mechanism.3 Class loaders
can be used for namespacing, or sandboxing loaded classes.[5] In fact, a Java class is de�ned

2Or at load time, we will talk about reasons for �rst or second way in chapter 4
3For example altering loaded class, generating extra code, proxying etc.
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Figure 3.1: JavaClass

by its name and its loading class loader.[6, section 5.3] There was no class loader support in
initial Libjava implementation. However, lot of modern libraries and applications nowadays
make use of it - Groovy or Tomcat to name some of them.

To properly support class loaders, we have designed a JavaClassRegistry that keeps
track of all loaded classes and class loaders. An instance of Java class can be reclaimed,
when there is no reference to it and when there is no reference to its loading class loader [4,
section 12.7]. Class registry holds every used class loader instance in the weak dictionary4

together with all classes loaded by given class loader.

Di�erent class loaders are used in di�erent phases of VM startup. In following section
we will present the details.

3.4.1 JVM startup and class loaders

JVM speci�cation de�nes three class loaders. Bootstrap class loader (also called pri-
mordial),[6, section 5.3.1] is used during JVM startup, Extension class loader, is used
to load extension classes to JVM, and System class loader, which takes over after JVM
startup and is parent to all user-de�ned class loaders.[6, section 5.3.2]

4References in weak collection do not prevent garbage collector in collecting an object.
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Figure 3.2: Constant pool content

3.4.1.1 Bootstrap class loader

Bootstrap class loader loads all classes de�ned in sun.boot.class.path Java property.[7]
Classes included in these JARs cannot be loaded by any other class loader, they cannot be
overridden, unloaded or reclaimed.5 If user-de�ned class loader attempts to load such a
bootstrap class, an instance of SecurityException is thrown.

Most of the behavior of Bootstrap class loader is implemented by JavaClassReader,
so it can be shared with relevant native methods. This loader also loads extension class
loader. Classes loaded by this loader have their classLoader �eld set to null.

3.4.1.2 Extension class loader

Extension class loader is instance of sun.misc.Launcher$ExtClassLoader. During
JVM startup, singleton of this class is instantiated. It has two responsibilities: it loads all
classes de�ned in java.ext.dirs Java property and it loads a system class loader. After
loading system class loader, the system considers itself booted, as it is possible to continue

5There is small inconsistency in java.lang.ClassLoader#resolveClass0(java.lang.Class) na-
tive method, which ignores sun.boot.class.path and only checks, whether class name does not start
(package is part of fully quali�ed domain class name) with java.
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Class Description

JavaRef Root class de�ning interface with no functionality.

JavaClassRef Represents reference to the Java class. It is speci�ed by
fully quali�ed domain name of referenced class. Resolving
JavaClass is pursued in section 4.5.1.

JavaStringRef String literals in constant pool are encoded in UTF8.
JavaStringRef represents String object with given UTF8
value.

JavaClassContentRef De�nes common operations of JavaMethodRef and
JavaFieldRef

JavaMethodRef Together with JavaInterfaceMethodRef represent ref-
erence to the Java method. Resolving JavaMethodRef is
described in section 4.5.2.

JavaFieldRef Represents Java instance or static �eld. Resolving is de-
scribed in section 4.5.3.

JavaNameAndType JavaNameAndType is basic property both Java methods
and �elds describing their name and their type.

Table 3.2: Java constant pool content

loading classes without help of bootstrap class loader (which does not mean bootstrap class
loader is not used anymore, it is just not used to load everything). Time between load of
this class loader and load of system class loader can be called post-boot phase, core classes
are loaded, but it is not possible to use user-de�ned classes yet.

3.4.1.3 System class loader

Is instance of sun.misc.Launcher$AppClassLoader. Post-boot phase ends with load
of this class, as it is possible to use custom, user-de�ned class loaders and load user de�ned
classes. The system class loader is parent of all user-de�ned class loaders. It o�ers methods
using which classes can be found, loaded, registered, resolved and initialized. Every class
outside of responsibility of bootstrap and extension class loader, (and not loaded by user-
de�ned class loader) is loaded by system class loader. In our implementation, native methods
supporting system class loader behavior are de�ned in JavaVM along other native methods.

3.4.1.4 User-de�ned class loaders

Class loaders were designed to use delegation. User-de�ned class loader should delegate
request for loading a class to its superclass �rst, and if the class could not be found, then it
can try to load given class. Delegation ends in system class loader. This way, integrity of
class registry and correct responsibility ranges are ful�lled.

There are use cases, where delegation model is not desired. For example in Tomcat, an
open source implementation of the Java Servlet and Java Server Pages technologies, each
web application has its own class loader, so two web applications cannot see each other's
classes. If delegation would be used, web applications would have been sharing some classes.

http://tomcat.apache.org
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This is a security vulnerability, one application can modify a class and other applications
would use it.

Solution to this problem is simple, JVM performs many checks during various times (class
reading and loading, reference resolving, method invocation etc.) and ensures everything is
following rules imposed by JLS.

Of course, classes loaded by bootstrap class loader are shared, as they cannot be reloaded.



Chapter 4

Resolving

In this chapter, we begin with discussion about eager and lazy resolving, then initial imple-
mentation of Libjava will be shown, and then we present new resolving scheme.

Resolving is a process of loading and linking referenced class (and its �elds and methods)
into the running system. Each reference has an information (fully speci�ed domain class
name[6, section 4.3.1], and in the case of method or �eld, name and type[6, section 4.5.6])
using which a reference can be correctly resolved.

4.1 Resolving, loading, linking and initialization

There are 4 terms used: resolving, loading, linking and initialization. As they can have
various meanings (for example ClassLoader#resolveClass actually does not resolve,
but links), we will use them carefully with the meaning described in this section.

Resolving is done on reference, and it describes a process, when a referenced entity is
searched (and if needed loaded and linked) in running system. Linking is done on class,
and means plugging the class into the running system. Loading is a process from which a
new class is returned. New class can be loaded from class�le, or using class loaders. To be
able to use loaded class, it has to be linked. To be able to reference loaded class, a reference
has to be resolved. Initialization of the class is in fact calling class initialization method.
In Java, this method is called <clinit>.

There are two ways how to implement resolving logic, or more accurately, when to perform
resolving. JVM speci�cation [6] does not enforce nor prefer neither of them. However, it
de�nes, when class initialization must be performed, and as it turns out, this plays important
role in deciding, which resolving scheme to use.

4.2 Eager resolving

Eager alternative resolves all references during or directly after loading of the class. Advan-
tages are, that there is no runtime overhead connected with resolving (because everything
is already prepared). Also, we can directly store resolved objects into the runtime constant

21
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pool and therefore remove overhead connected with indirection. Disadvantage is, that is
would be very di�cult to invalidate constant pool.1

As mentioned before, class initialization must be taken into account. JVM is precise
in stating that class initialization must be performed lazily[6, section 2.17.4]. Using eager
resolving can then result in resolved references pointing at the not-yet initialized class. Static
�eld accessing instructions (PUTSTATIC, GETSTATIC) would need to check, whether a
class is initialized. In our implementation, it would mean to just check one �ag on Java
class, which is acceptable.

Big disadvantage of eager resolving is big increase in load time. Every single reference in
the constant pool is resolved. Many more classes are loaded, and they may not be used at
all.

4.3 Lazy resolving

Lazy resolving leaves resolving of the reference for the time, when the reference is accessed.
Disadvantage is runtime overhead, reference has to be resolved, but it happens only once for
each reference. After so called VM warm-up phase, when most of the references are already
resolved, di�erence is much smaller and performance is almost the same as in eager resolving.
JVM speci�cation [6, section 2.17] advises to replace resolved object with the reference in
the constant pool. This way, once the resolving happened, there is no di�erence between
eager and lazy resolving. Using this approach, constant pool invalidation becomes di�cult.
Class invalidation is important feature allowing us to dynamically change loaded classes and
it makes incremental compiling easier to implement and more powerful.

Because of that, we decided not to replace references, and store resolved object into the
instance �eld of the reference as a simple caching mechanism. This way runtime overhead
after warm-up phase equals to one access into struct and null check. If the cache is empty
(nil), resolve method has to be called.

4.4 Initial resolving architecture

Original version Libjava used resolving scheme suggested in the JVM speci�cation, it lazily
replaced references in constant pool with resolved classes and methods. We found this
implementation confusing, as the constant pool could contain instances of 3 di�erent classes,
and object at the certain index could change into an instance of completely di�erent class
in time. This had to be checked in the code at many places including Bytecode Interpreter.
For example, method shown in 4.1 answers true, if name given as a parameter refers to any
method in the constant pool.

1 refersToMethodNamed:aJavaMethodName
2 self do:[:constItem |
3 (constItem isKindOf:JavaMethod) ifTrue:[

1Invalidation importance is pursued in section 4.6 For example when we would like to replace class in
runtime, we would have to update all references to that class. This feature is not present in JVM, but is
very common in Smalltalk implementations.
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4 constItem name = aJavaMethodName ifTrue:[↑ true].
5 ] ifFalse:[
6 (constItem isMemberOf:JavaMethodref) ifTrue:[
7 constItem name = aJavaMethodName ifTrue:[↑ true

].
8 ].
9 (constItem isMemberOf:

JavaUnresolvedMethodrefConstant) ifTrue:[
10 self error.
11 ]
12 ]
13 ].
14 ↑ false

Code Example 4.1: Initial resolving logic example

This approach made code very di�cult to manage. Code similar to the Listing 4.1 could
be found in many places around the system. Also, there were particular bugs, which were very
di�cult to track.2 Because of these reasons, we decided to rewrite whole resolving logic and
constant pool content. Secondary reason was, that new approach is much more �exible and
constant pool invalidation or reference sharing will be easier to design and implement. Final
reason was that resolving logic was spread among the code a did not follow the speci�cation
regarding the access �ags or class loaders.

4.5 JavaResolver

All new resolving logic is encapsulated in JavaResolver class. A decision has been made
to start with lazy resolving, as it is the most straightforward and allows faster startup. As
turned up later, there is more eager approach which is more performant but does not loose
any of bene�ts of the lazy approach. Deeper explanation of this topic can be found in section
6.2.1.

During the resolving, resolved value is cached in the reference object itself and next time
a reference is accessed, cached value is returned. In Bytecode Interpreter, this overhead is
even smaller, as Bytecode Interpreter directly accesses instance �eld without method call.
Cache invalidation is means only nilling out the cache slot in the reference object. So far,
cache invalidation is not used, but it will be important in future work.

In following sections, we will describe resolving logic of classes, methods and �elds.

4.5.1 Resolving classes

Class reference is identi�ed by a fully quali�ed name of the referenced class. Simpli�ed
resolving class reference logic is shown in 4.2.

2In some places in the code, a reference was replaced with wrong object, also possibly in the Bytecode
Interpreter. This invalid object stayed in the constant pool and program crashed only when constant pool
on this index was accessed, which was often many instruction or methods later.
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1 resolveClassIndentifiedByRef: aJavaClassRef
2 | result |
3 self validateClassRef: aJavaClassRef.
4 JavaClassReader classLoaderQuerySignal answer: (

aJavaClassRef classLoader)
5 do: [
6 result ← self lookupClassIfAlreadyResolved:

aJavaClassRef javaClassName.
7 result isNil ifTrue: [
8 result ← self loadUnresolvedClass:

aJavaClassRef.
9 ]

10 (self checkPermissionsFrom: aJavaClassRef owner to: result
)

11 ifTrue: [ ↑ result ]
12 ifFalse: [ self throwIllegalAccessError ].

Code Example 4.2: Class reference resolving

First, method checks whether a given reference is valid (line 3). This is just an assertion
of correct type and does nothing in production build. Interesting code on the line 4 causes
correct class loader to be used in surrounded code. Then if the referenced class is not
already loaded (line 6), it is loaded now. Finally, method veri�es whether a reference owner,
a class accessing the referenced one, can access the referenced class (line 10). If everything
went without errors, resolved class is returned (line 11) and stored in instance variable (as
cache). Interpretation then continues. If given class does not have permissions to access the
reference, an IllegalAccessError is thrown (line 12).

Code example 4.3 demonstrates new resolving process in from Bytecode Interpreter.

1 case NEW:
2 {
3 unsigned short index;
4 OBJ classRef;
5 OBJ newInst;
6 OBJ resolvedClass;
7

8 index = FETCH_INDEX_2;
9 classRef = CONSTANTPOOL_AT(index);

10 VALIDATE_REFERENCE(classRef,"ClassRef", 2);
11 RESOLVE_REFERENCE_IF_NOT_ALREADY(classRef, "ClassRef", 2,

0);
12 resolvedClass = RESOLVED_VALUE(classRef);
13 if (resolvedClass == nil) {
14 goto returnNIL;
15 }
16 newInst = _SEND0(resolvedClass,
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17 MKSYMBOL("newCleared"), nil, &newCleared);
18 *sp++ = newInst;
19

20 break;
21 }

Code Example 4.3: Resolving example shown in NEW instruction

Figure 4.3 shows an excerpt of bytecode interpreter responsible for execution of NEW in-
struction. Index into constant pool is popped from the instruction stream (line 9), class refer-
ence object is fetched from the constant pool (line 10). Macro RESOLVE_REF_IF_NOT_ALREADY
(shown at Figure 4.4) actually does the resolving. If resolved class exists, it is pushed onto
the stack (line 19), if it does not, nil is returned (line 15).3

1 #define RESOLVED_VALUE(ref) \
2 (__InstPtr(ref)->i_instvars[0])
3

4 #define RESOLVE_REF_IF_NOT_ALREADY(ref, type, delta, stat) \
5 if (RESOLVED_VALUE(ref) == nil) { \
6 _SEND0(ref, MKSYMBOL("resolve"), nil, &dummy0); \
7 }

Code Example 4.4: RESOLVE_REF_IF_NOT_ALREADY macro

In the macro 4.4, we start with checking, whether instance �eld in ref (our cache) is nil
(line 2). If yes, it means that the reference has to be resolved. In that case, resolve is sent
to the reference object (line 3).

This is the reason why there are classes like JavaBehavior or JavaRef. They de�ne
exact and expected structure, VM expects particular instance variable at certain index,
currently, at index 0, there is valueCache.

Another important note is, that code in RESOLVED_VALUE macro is executed very often.
Accessing instance variable of the object is acceptable, anything more complex would be a
big performance �aw.

4.5.2 Resolving methods

Resolving method di�ers from resolving a class in one issue. We can resolve instance method
or static method. In the constant pool, there is no information about whether a method
is static or instance. But because there cannot be two methods with the same name, it is
safe to �nd �rst method with given name. As it turns out, this is exactly how it is done
internally in openJDK.

During the writing of this thesis, resolving has been greatly simpli�ed. Before, we used
two separate resolving methods: resolve and resolveStatic. Depending on used in-
struction, one of these two methods was used. For example, GETSTATIC instruction used
resolveStatic method.

3In fact, nil is never returned, because in case of not existing class, an exception is thrown during resolving.
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This is not needed, and in fact, our implementation was overly cautious. Our expectations
were, that it is not possible to override instance �eld in superclass with static �eld in subclass
(and methods too, but the correct way di�ers slightly). In other words, all instance �elds in
the whole inheritance tree are searched, and then all static and interface �elds are searched.
This turned up to be incorrect, all instance �elds are searched, than all static, and if nothing
is found, lookup continues in superclass.

As there can not be two �eld with the same name in one class, it turned up that normal
and static resolving can be uni�ed safely.

Interesting fact is, that compiler does not allow static method in the subclass to override
instance method in the superclass, but it does allow it for the �elds.

Currently, there is only resolve method which handles all cases.

4.5.3 Resolving �elds

To resolve a �eld, we have very similar approach compared to resolving methods. The
purpose of resolving a �eld is to �nd index into instance (or class for in case of static �elds)
where the requested datum is physically stored.. Index is then accessed in the Bytecode
Interpreter, which then manipulates a �eld respectively.

As mentioned in previous section, resolving has been simpli�ed and new scheme is pre-
sented here.

Listing 4.5 shows the �eld lookup routine.

1 lookupFieldByNameAndType: aJavaNameAndType
2 | field cls |
3 cls ← self.
4 [ cls ~~ JavaObject ] whileTrue: [
5 field ← cls findInstFieldByName: aJavaNameAndType name.
6 field ifNotNil: [ ↑ field ].
7 field ← cls findStaticFieldByName: aJavaNameAndType

name.
8 field ifNotNil: [ ↑ field ].
9 field ← cls findInterfaceFieldByName: aJavaNameAndType

name.
10 field ifNotNil: [ ↑ field ].
11 cls ← cls superclass.
12 ].
13 ↑nil

Code Example 4.5: Field lookup algorithm

Lookup starts in the current class (line 3), and then it searches instance �elds (line 5),
static �elds (line 7) and interface static �elds (line 9). If the �eld is found, it is returned,
otherwise the lookup continues in the classes superclass (line 11). Lookup ends after reaching
JavaObject (line 4).
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4.6 Invalidation proposal

Class invalidation is a feature which allows classes and methods to be modi�ed and replaced
in runtime. When such change happens, classes that use or otherwise refer to the modi�ed
class must be informed as the modi�ed class may be invalid (for example, required method is
missing and an exception has to be thrown). This feature is very interesting in conjunction
with incremental compiler (currently a research is being made on ECJ - incremental compiler
used in Eclipse).

New resolving scheme was designed with invalidation in mind, so implementation will
not be complex. First, a minimal working invalidation will be created, integrated with
development tools and will use third party incremental compiler, probably ECJ. Later, when
all corner cases are discovered and tuned, we can reimplement it for speed.

4.6.1 Constant Pool invalidation

Because we use references, and we do not replace them with resolved items, we can easily
invalidate constant pool and then, when reference is accessed next, it will has to be resolved.
After resolving, new or modi�ed class (method, �eld . . . ) will be used.

Currently, all constant pool instances are stored in collection. When a class is made
invalid, a invalidateForClass: method will be sent to every constant pool, which will
then traverse whole constant pool and mark relevant references invalid (forcing resolving in
next access).

This approach is very slow, as every class and every reference must be asked and marked.
Small improvement can be to hold a collection of dependent classes in every Java class, so
when asked, Java class can say quickly, without having to traverse whole constant pool,
whether class invalidation is relevant to it. Disadvantage is, that new �eld in JavaClass
will make instance size bigger.

Another possible solution is that each Java class will hold a collection of all references
pointing to it, and then, when invalidated, only relevant references are noti�ed. References
dependent on the class reference must be noti�ed also.

Big speedup in invalidation performance would be adding one more indirection. For
every Java class, only one real reference is created, and in every constant pool only �yweight
reference would be stored, knowing its index in the constant pool, resolved item, and real
reference instance. Then when class is invalidated, only real reference is noti�ed, and thus
invalidation happens in constant time.

Class invalidation is a feature useful during development, but it is rarely used in produc-
tion. Having to traverse whole class space is acceptable, as it will not happen often. Adding
another level of indirection brings runtime overhead, which will dramatically slow down
whole system. However, using smart JIT compiler, which can eliminate these jumps, run-
time overhead can be lowered. As the JIT compiler is not �nished yet, we delay decisioning
about this feature.

http://www.eclipse.org/jdt/core/
http://www.eclipse.org
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4.6.2 Incremental compiling

With working class invalidation, the incremental compiling of Java classes will be possible.
A lot of work has been done in this area by Eclipse project, which contains ECJ, incremental
compiler for Java written in Java.

ECJ will be integrated with development tools, and accepting a method from standard
Class Browser will be possible.

When a class is modi�ed, it will replace the old version in class registry. All references will
be invalidated, together with JIT compiled code for relevant methods. Next time a reference
is resolved, it will �nd new modi�ed class. Part of the resolving logic is veri�cation, so in
case of incompatible change an exception is thrown.

Code still using old class will not break, old class is removed from class registry, but it
still exists in the object space. When there are no more references to it, it will be reclaimed
by the Garbage Collector.

http://www.eclipse.org
http://eclipse.org/jdt/
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Concurrency and monitors

In this chapter we will talk about our implementation of threads and locking mechanism used,
monitors. We will start with presentation of our design, then we will dive into the di�erence
between Java and Smalltalk exceptions, and why this is an issue regarding synchronization.
Then we will propose a solution.

5.1 Monitors

JVM is known to be multithreaded, and supports native, OS level threads. This is one
of its strongest feature, it can run on multiple processors. Like all Smalltalk environments,
Smalltalk/X support threads (called processes in Smalltalk). Contrary to JVM, Smalltalk/X
runs in a single OS process and does not support native threads1 In other words two threads
will not run at the same time on two CPUs or CPU cores. Since Smalltalk/X scheduler is
preemptive, a thread can be interrupted at any time, another thread is scheduled. Later on,
the interrupted thread may be rescheduled and run again.

In JVM, fundamental locking mechanism used is called Monitor. Only one thread can
own the monitor, there can be many threads waiting a queue to own the monitor, and many
threads can sleep on monitor, being noti�ed by other threads or waken up after some timeout.
On language level, there is synchronized keyword, which can be de�ned on a block and
on a method. Java compiler is responsible for inserting MONITORENTER and MONITOREXIT
instructions, when dealing with synchronized blocks. JVM is responsible for entering and
exiting monitor when whole method is marked synchronized.

Initial version of Libjava used three dictionaries in the JavaVM, LockTable, WaitTable
and EnteredMonitorsPerProcess. The �rst one holds waiting set for each monitor,
second one maps objects to their associated monitor, and the third holds every monitor
particular process entered. These dictionaries were manipulated using many methods in the
JavaVM. A monitor was represented by Monitor class, which is core class of ST/X VM,
but has no support for waiting and notifying.

Original implementation worked �ne, however, it did not follow the semantics as spec-
i�ed in [6, section 8.14]. Therefore, we decided to reimplement Monitors from scratch and
according to the VM spec.

1Actually, Smalltalk/X uses native threads on Windows, but only one thread is running at time.
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Action Description

enter enter the monitor and try to acquire

acquire wait and gain the ownership

release give up the ownership, but stay in the monitor

exit release the monitor and leave it

Table 5.1: JavaMonitor public interface

5.1.1 JavaMonitor

JavaMonitor is basic class that represents Java monitor. It uses existing Smalltalk semaphore
support to implement desired behavior.

Instances of JavaMonitor remember their waiting and sleeping processes, know who
and when to notify. They also correctly handle waiting on dead threads (threads that already
�nished their work). JavaMonitor o�ers 4 actions a process can take, they are shown in
table 5.1.

JavaMonitors also handles cases, when a process recursively enters the monitor and
goes to sleep then. Current monitor is released and after notifying the process, monitor is
acquired again (it has to win the usual competition in the waiting set), it has to own exactly
the number of locks it owned before going to sleep.

5.2 Exceptions in Java and Smalltalk

In Java, when instance of java.lang.Throwable is thrown, JVM searches the stack for
exception handler (de�ned by keyword catch), and on the way it immediately destroys the
method stack and executes finally blocks. When the handler is found, it is executed.
Method with handler then returns and execution continues. Every context between the one
throwing an exception and the one handling it, is unconditionally destroyed.

Contrary to Java, in Smalltalk when an exception is thrown, a user code in exception
classes searches the stack for a handler (similarly to JVM). When a handler in context is
found, its asked for a handler block (kind of anonymous function) that is then executed on top
of the throwing context. The handler may then decide whether to unwind all intermediate
contexts up to the one that de�ned the handler or just proceed. Such an implementation is
more powerful but also bit more di�cult to implement e�ciently.

Because in Smalltalk, throwing an exception does not automatically mean stopping the
execution and continuing elsewhere, we had to carefully implement monitor releasing and
�nally block execution.

A Java thread owning few monitors, executes a Java native method (Figure 4.4), and a
Smalltalk exception is thrown. Without any additional handling, all monitors owned by the
thread, would be locked forever, which is not what is expected.

There is a lot of things a care has to be taken of. First, we have to �nd a Smalltalk
handler, and see, whether it is going to resume execution in the source context. If yes, there
is nothing more to be done. If no, we have to walk the stack again and �nd the handler
block. On the second run, �nally blocks on all relevant Java contexts must be executed, then
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all acquired monitors have to be exited, and process is removed from the monitor waiting
set, in case it was waiting for noti�cation.

Our solution is to mark every Java context, in which a monitor is entered and make Java
context to remember all monitors entered in it. Similarly, �nally blocks are marked. Then,
during stack unwind, we release every monitor owned by the thread, unregister the thread
from the waiting sets and execute finally blocks.

To achieve this we had to change JavaContext class, update corresponding code in
Bytecode Interpreter. JIT compiler has to be updated too.
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Chapter 6

Just-in-time and incremental

compilation

In this chapter we will describe initial JIT compiler present in Libjava, then we will propose
changes needed in the Libjava, to make JIT implementation easier. At the end, we will
describe changes needed to the old JIT compiler and ways how to deal with certain added
features.

Just In Time compiler is special compiler used in virtual machines and its goal is to
compile bytecode in runtime, when it has more information about environment and code
itself. Based on this knowledge, it can compile bytecode to e�cient native code.

6.1 Current implementation

Current JIT compiler present in Libjava is not working with Java version 6. The original
implementation of JIT compiler is written in C. It supports several architectures including
i386, SPARC and few others. As the reader may imagine, this code is bit complex and hard
to modify. We decided not to deal with it during the early development as all the APIs were
changing too often and it did not make sense to spent time by updating JIT compiler after
every change when we were not completely sure the change is correct.

6.2 Changes to the current Java implementation

To make JIT compiler easier to implement and JIT compiled code faster, there are areas
which can be improved in our current Java implementation.

6.2.1 Resolving

Resolving scheme is described in chapter 4. Our very lazy implementation can be improved
by two steps:

1. Safely transfer resolving references to the link-time

2. Update Bytecode Interpreter to support this change
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6.2.1.1 Safe resolving during link-time

Our proposal is to resolve whole constant pool during link time, or less eager alternative, to
resolve whole constant pool of class, which is accessed often. A problem is that there can be
references referencing classes, which are not yet loaded. As said already, JVM speci�cation
is strict in de�ning when class initialization method must be called, but does not dictate
when class can be loaded. The solution is to load classes into the VM without initialization,
and when class is accessed, class initialization method is called �rst.

Class is accessed in 3 ways:

� When new instance is created

� When static method is called

� When static �eld is accessed

First two cases will not cause problems, as we already check, if the class is initialized
there. Last case needs small change made in the Bytecode Interpreter.

6.2.1.2 Bytecode Interpreter change

When static �eld of Java class is accessed, compiler generates PUT/GETSTATIC instruction.
These instructions are relatively simple and they have to be fast, as they are used very often.

In scenario, when references are resolved during link time, but Bytecode Interpreter is not
changed, situation can happen, when static �eld of uninitialized class is accessed and later,
NullPointerException can be thrown. Bytecode Interpreter has to check, whether the
class is initialized, and if not, it has to initialize it. This check must be as fast as possible,
so Java class has to have ACC_INITIALIZED �ag. During the runtime, this �ag is checked
(which is fast, only one access to the array and null check) and in case of uninitialized class,
classInit method is sent.

Another bene�t is that instead of testing and resolving many references during run-time,
references will be resolved in link-time. Therefore, this change will make warm-up phase
much shorter (and startup phase much longer, as mentioned in Chapter 4).

6.3 Changes needed in the JIT compiler

Following enumeration summarizes changes relevant to the JIT compiler.

� New resolving scheme (chapter 4)

� Added Java Annotations

� Changed layout of JavaContext object (added �eld)

� Methods with more than 16 arguments (section 2.2.6)

All remaining features (for example Bytecode Interpreter trampoline methods) were not
modi�ed (their implementation is di�erent, but API stayed unchanged).



6.4. JIT COMPILATION PROPOSAL 35

6.4 JIT compilation proposal

It is common for JIT compilers to fall back to the interpreted code, when the method being
compiled is too complicated. Such case can be for example accessing unresolved reference
(or with changes proposed in section 6.2.1, uninitialized class). With updated resolving JIT
compiler does not have to insert message send into the native code in case of unresolved
reference (which is quite complex issue), failing and interpreting code in case of unresolved
class is acceptable, and in next invocation, class will be initialized and JIT compiler can try
again.

To make JIT compiled code really fast, as many runtime check as possible must be
omitted (after checking in JIT compile-time that class is initialized, this check can be omitted.
Of course, later, when class will be invalidated, JIT compiled code must be invalidated as
well.). Also, checking whether the reference itself is valid and of correct type can be omitted.

Another bottleneck in current implementation are monitors. Situation, when two threads
compete to acquire the monitor is very uncommon, usually, monitor acquired by running
thread is free. An obvious solution to de�er a full monitor instantiation to the time when
there are actually multiple threads accessing the object, is protected by patent 6735760. A
patent-free solution to this problem with similar performance is yet to be found.

Also, very often, the monitor exited is the same as the last monitor entered. This
can be improved greatly by an optimization, which was already present in old monitor
implementation (which was removed as it made debugging almost impossible). Last monitor
used can be saved in the global variable by Bytecode Interpreter. When MONITORENTER
and MONITOREXIT instructions are interpreted, they can compare their object with cached
one, and in case of hit, whole monitor lookup time is saved. In other case, cache is cleared
and new monitor is looked up.

Monitor lookup time can be reduced by creating new instance variable in JavaObject
and lazily storing monitor for given object there. This change would make each Java object
bigger, which can also hinder performance.

All these changes are only proposals and in the time of writing this thesis, they are
still being evaluated. More complex optimizations such as method inlining and object space
monitoring are far beyond the research aim of the whole Libjava. The biggest expected
performance gain is use of inline caches, which should increase raw performance by roughly
10% ([2]), which is still very pessimistic expectation. In our case, when reference indirection
and runtime checks would be eliminated, speedup should be bigger.

http://www.google.com/patents/US6735760
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Chapter 7

Testing

Developing an application like Libjava, testing is particularly important part of the process.

Although there is Java Language Speci�cation and JVM speci�cation, there are many
areas, where speci�cation is not dictating exactly, how a particular feature should be imple-
mented.1 There are also places, where speci�cation is not exact and does not provide enough
information.2

Because of these reasons, basic unit testing using SUnit was not su�cient. We needed
to test our Smalltalk code that it does what we expect it to do, and we also needed to test,
that our implementation behaves the same way as original JVM does. SUnit brings us only
half way there, as it is just testing that we implemented our assumptions correctly, not that
our assumptions were correct.

An obvious solution to this problem was to write tests in Java, and execute them on both
original JVM and our implementation, and assert same test results. Being able to execute
JUnit tests, Java alternative to SUnit, was one of the �rst milestones on our roadmap. We
reached this goal, and wrote many JUnit tests in Java, which we were then executed on our
Java implementation. This approach has proven to be very valuable, especially when we
were dealing with class loading di�culties, but also during normal development, for example
when developing new features3 or when we needed to reproduce speci�c situation.4

7.1 Test Runner integration

TestRunner is part of ST/X IDE, greatly simpli�es running and debugging SUnit tests.
Any class inheriting from TestCase loaded in the system, was automatically visible in
TestRunner. Another improvement, which has been done, was proxying JUnit classes and
allowing JUnit tests to be run using TestRunner. TestRunner completely hides the fact, that
JUnit tests are not written in Smalltalk. This way, one can run Java JUnit tests just like
SUnit test right from the Smalltalk development environment, using the same tools. This
greatly simpli�ed testing process and consequently speeded up whole development process.

1Such as resolving [6, section 2.17.1]
2Behavior of class loaders during the vm startup phase [6, section 5.3.1]
3e.g. Annotations
4e.g. executing method with more than 16 arguments
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Proxying of JUnit Java Classes is done dynamically, during registration. System recog-
nizes, that a class resembling JUnit is being registered,5 and dynamically creates a proxy, a
subclass of JUnitTestCaseProxy, which implements protocol needed by TestRunner, and
delegates every other method call to the Java class. Every subclass of JUnitTestCaseProxy
is automatically recognized in TestRunner tool.

7.2 Mauve tests

What dramatically boosted development process, was discovery of Mauve Test Suite. The
Mauve Project is a collaborative e�ort to write a free test suite for the Java class libraries.
The current collaborators come from the Ka�e project, the GNU Classpath project, and the
GCJ project. At the time of writing this thesis, it consisted of more than 5000 test classes,
covering standard Java library, AWT, Swing, CORBA etc. We used only a part covering
mainly java.*, javax.* packages, resulting in 1418 tests being run nightly, out of which,
561 were still failing. Most of these tests fail because of missing native methods or because
of bugs in existing native method implementations.

Mauve tests are also integrated into the ST/X IDE, there is TestletTestCaseProxy.
Testlet is xUnit's TestCase alternative, Mauve Test Suite implements it's own lightweight
testing framework, so it is not dependent on any existing Java code. Proxy is implemented
using same system hooks and dynamic subclass creation pattern as JUnitTestCaseProxy.

5Class resembles JUnit, if it has org.junit.TestCase as a parent - that's the case of JUnit3, or has
methods annotated with org.junit.Test annotation - in case of JUnit4

http://sourceware.org/mauve/
https://github.com/kaffe/kaffe
http://www.gnu.org/software/classpath/
http://gcc.gnu.org/java/
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Validation

To validate our implementation, we tried to run several mid-scale to large-scale projects
written in Java, namely JUnit, Groovy, ECJ and Tomcat. Each of these projects was big
milestone and required a lot of e�ort, especially in implementing native methods. In this
chapter we talk about why we have chosen particular project, what problems we had and
what is the current state of each project.

8.1 JUnit and Mauve

Integration of JUnit andMauve test frameworks already mentioned. Libjava can run both
JUnit 3.x and JUnit 4.x testcases, as well as Mauves's testlets.

On the Figure 8.1 we see TestRunner window with one of our Java Tests project loaded.

On the left side there are loaded packages, in the middle classes present in currently
selected package, and on the right test methods in currently selected class.

JUnit4 test case class is selected, so test methods on the right side does not have to
have their name starting with 'test', they are picked, because they have been annotated with
org.junit.Test.

Every method is executed and an icon telling whether the test passed or not is set.

This is achieved by catching all exceptions thrown in JUnit test,1 and mapping it to
TestResult instance2.

JUnit helped us during implementation of more complex features. It is integrated into
development tools and is well tested and often used.

8.2 Groovy

Groovy is dynamic language written on top of JVM.

1Instances of org.junit.framework.AssertionFailedError are also exceptions, so at the end, a
test method passes when there is no exception thrown during its execution

2TestResult is object returned by Test executor encapsulating result, failures, error messages etc
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Figure 8.1: TestRunner with Java tests loaded

Its goal is to build upon strength of Java, but also to add dynamic features known from
languages such as Python, Ruby or Smalltalk.

One of its advantages is, that Java syntax is valid also in Groovy. That means that all
existing Java code is runnable by Groovy.

Groovy introduces many interesting features such as Multiple Dispatch or Closures.

Groovy is able to compile Groovy code to standard class�le. This class�le is then exe-
cutable by normal JVM.

Our motivation to have Groovy running on Libjava was based on idea of using Groovy's
dynamic features to �ll in dynamic nature of Smalltalk/X environment and using Groovy to
interpret Java during the Java development.

Workspace in ST/X is a place, where developer can write arbitrary Smalltalk code and
evaluate it.

He can inspect the result of computation, he can just print it or he can just evaluate
code and discard return value.

Because when in IDE, Smalltalk VM is running and one can operate on live objects,
workspace is often used during development3.

Workspace is just a normal window with text area, it's the design of Smalltalk, which
allows runtime parsing, compilation and execution.

Groovy has similar possibilities, so Groovy evaluator has been integrated into workspace
8.2.

It's possible to enter arbitrary Java code, and it gets evaluated. On the Figure 8.2 simple
code (seen in Listing 8.1).

3For example calling class methods, setting class variables, testing code, or just tweaking runtime envi-
ronment by enabling break points, programmatically changing con�guration etc.
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Figure 8.2: Integration of Groovy into Workspace

1 if (2 % 2 = 0) {
2 System.out.println(‘‘Hello Java’’);
3 }

Code Example 8.1: Java code executed by Groovy Workspace

Groovy uses various Java features thoroughly, especially re�ection and class loaders and
helped us to �x many bugs and misunderstandings. Arbitrary Java (Groovy) code can
be executed in workspace, and this is the �rst step of having Smalltalk-like development
environment for Java.

Work to be done in integration of Groovy into ST/X is for example extending System-
Browser to be able to accept Java code. ECJ is probably better suited for this goal though.

8.3 ECJ

ECJ is part of development tools used in Eclipse IDE. We are able to compile Java class, and
it is currently evaluated for use as a part of incremental compiler infrastructure for Libjava.

http://eclipse.org/jdt/
file:www.eclipse.org
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8.4 Tomcat

Tomcat is open source implementation of Java Servlet and JavaServer Pages technologies.
We are able to start the server, we can deploy web applications to it and access them in the
web browser.

Figure 8.3: Screenshot of Tomcat running on the Libjava

On the Figure 8.3, a slightly modi�ed web application distributed with Tomcat, is run-
ning. This page is accessible from the Internet and a crawler visits links on the website, to
test, if our virtual machine is stable enough. Tomcat is big success as it uses every feature
Java language has, it heavily depends on threads and synchronization, it uses class loaders to
sandbox web applications, it uses re�ection for hot deploy (adding a web application without
having to restart the server). It is even possible to deploy a web application using manager
web application (another web application distributed with Tomcat, which serves as remote
administration tool).

Making Tomcat work was very demanding, many native methods had to be implemented,
various bugs in monitors or class loading were discovered and �xed.

http://tomcat.apache.org/
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Summary

In this thesis we presented Libjava after o year of development. Initial version was analyzed
and in many parts �xed or completelly rewritten. All essential features required to run Java
6 code were added.

Currently, Libjava is able to run Java 6 code, and it has been tested against various Java
projects, namely JUnit (a testing framework for Java), Groovy (a dynamic programming
language that compiles to Java bytecode), ECJ (a Java compiler) and Tomcat (Servlet and
JSP container).

From features added or changed the most important are:

� �xes in class loader

� redesign of Java Constant pool and resolving logic

� implemented notion of Class Loader

� redesigned Class Space

� reimplemented synchronization, Java monitors

� changed native method binding mechanism

� many native methods implemented

To incrementally compile Java classes, Groovy was explored and integrated into the tools
(namely Workspace, part of Smalltalk/X IDE, used to execute arbitrary Smalltalk, and now
Java code too). Arbitrary Java and Groovy (superset of Java) code can be executed from
there.

A tool that allows programmers to use Eclipse compiler for Java from Smalltalk IDE is
currently under development.

Future work embodies integration of incremental compiler and Just In Time compiler.
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Appendix A

List of used abbreviations

JVM Java Virtual Machine

ST/X Smalltalk/X

JIT Just-in-time compiler

JAR Java Archive, standardized zip-like archive format

IDE Integrated Development Environment

JLS Java Language Speci�cation

...
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Appendix B

Content of attached CD

Smalltalk/X development environment, prepared for use with Libjava, is attached on a CD.
To start Smalltalk/X, a shell script is attached as well. After start up, tutorial.st, interactive
tutorial for Libjava, can be opened.

Attached CD has following structure:

.
+-- README.txt
+-- start_stx.sh
+-- stx
| +-- bin
| | +-- stx
| | +-- stc
| +-- lib
+-- stx.tar.bz2
+-- tutorial.st
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